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ABSTRACT 

The paper presents Model Predictive Control (MPC) and Fault Detection and Diagnostics (FDD) technologies, their 

on-line implementation, and results from several demonstrations conducted for a large-size HVAC system. The two 

technologies are executed at the supervisory level in a hierarchical control architecture as extensions of a baseline 

Building Management System (BMS). The MPC algorithm generates optimal set points for the HVAC actuator 

loops which minimize energy consumption while meeting equipment operational constraints and occupant comfort 

constraints. The MPC algorithm is implemented using a new tool, the Berkeley Library for Optimization Modeling 

(BLOM), which generates automatically an efficient optimization formulation directly from a simulation model. The 

FDD algorithm detects and classifies in real-time potential faults of the HVAC actuators based on data from 

multiple sensors. The performance and limitations of FDD and MPC algorithms are illustrated and discussed based 

on measurement data recorded from multiple tests. 

1. INTRODUCTION

The large potential economic impact of advanced technologies underlying modern Building Management Systems 

(BMS) have led to increased efforts focused on developing, designing, and implementing model-based control and 

diagnostics technologies for building HVAC systems with the objective to estimate their cost effectiveness. The 

potential economic impact is apparent both from the high energy-consumption levels of building HVAC systems, 

estimated currently at 27% (EPA, 2008), and from limitations of existing control technologies for HVAC systems. 

To overcome current non-optimal performance and limited coordination capabilities, model-based paradigms have 

been employed to integrate in a direct and systematic way sensor data from multiple subsystems with the objective 

to generate optimal set-points that lead to and increased overall efficiency. Implementation of model-based 

algorithms—requiring more communication and computational resources than traditional control systems—has been 

facilitated by the availability of modern BMSs platforms and open communication infrastructures.  

This paper describes a model-based optimal set-point control algorithm, MPC, and a data-driven equipment fault 

diagnostics implemented at supervisory level, as an extension of a baseline Building Management System (BMS). 

The focus is on their development, implementation, and performance estimation based on the results of tests 

conducted in two commercial buildings. Integration of the two technologies into the same model-based framework 

addresses two major challenges in building control systems: cost of deployment (relative to energy savings), and 

optimization of the HVAC system efficiency throughout its life. Although previous efforts (Adetola et al., 2013; 

Bengea et al., 2014) have demonstrated energy savings separately for diagnostics and optimal control algorithms at 

various building scales, the model-based technologies have not always led to cost-effective solutions due to the cost 

of commissioning of instrumentation and algorithms. The effort described herein minimizes these costs in two ways. 

First, by deploying the MPC and FDD algorithms on the same platform, within the same framework, using the same 

sensor suites for large-size HVAC units. Second, by employing an automated tool for formulating optimization 

problems associated with MPC algorithms. In addition, the integrated framework proposed herein has the potential 

to maximize the building system efficiency throughout its lifetime by enabling implementation of fault-tolerant 

technologies that integrate the two algorithms.  

Fault detection and diagnostics technologies can potentially reduce significant energy inefficiency resulting from 

faults and degradation of building equipment and materials; errors in operating schedules and critical 

design/planning flaws. A comprehensive literature review can be found in (Katipamula 2005a, and 2005b) where the 

FDD methods are broadly categorized into two classes, namely model-based and data-driven. Model-based 
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techniques primarily involve either physics-based models, such as APAR rules in (Schein, 2006), sophisticated 

Modelica models in (Wetter 2009), EnergyPlus simulation models in (Pedrini et al., 2002)) or empirical models, 

such as extended Kalman Filter in (Yoshida, 1996). Although model-based techniques perform reasonably well, 

often calibration and validation of such models may become expensive. Data-driven techniques have the advantage 

that require a reduced calibration and validation effort and range from simple statistical analysis (Seem 2007), 

principal component analysis (Xiao and Wang, 2009) to complex machine learning models, such as artificial neural 

network (Peitsman and Bakker, 1996). The algorithm implemented for this effort uses a probabilistic graphical-

model based technique to model the historical performance of various HVAC subsystems in a data-driven manner. 

Specific faults of HVAC actuators, such as dampers and valves are flagged and diagnosed in real-time upon 

detections of any deviations from the modeled nominal behavior. Based on experimental data, it was estimated that 

the FDD algorithm correctly diagnosed the HVAC subsystem faults in 84% of the cases, missed the detection of 6% 

of the events, and generated false alarms in 10% of the cases when faults were seeded. 

 

Model Predictive Control technologies are applied optimal control algorithms that use dynamical and steady-state 

models and predictions of plant disturbances to minimize a selected performance cost while satisfying operation and 

equipment constraints (Morari and Lee 1999; Mayne et al. 2000; Borrelli 2003). In this effort, an MPC algorithm 

was implemented at supervisory level to periodically solve an optimization problem and generate optimal sequences 

of set points for AHUs and VAVs. A similar hierarchical architecture has been proposed in (Kelly 1988). Simulation 

and experimental results have been reported previously for smaller scale HVAC systems (Henze et al. 2004, 2005, 

Clarke et al. 2002, Li et al. 2012), and for radiant HVAC systems (Siroky et al. 2011). A similar implementation of 

an MPC technology, as the one described here, was reported in (Bengea et al. 2014) for a medium-scale Multi-Zone 

Unit for a commercial building. The efforts presented in this manuscript build on this previous implementation by 

employing the Berkeley Library for Optimization Modeling (BLOM) (Kelman, Vichik, and Borrelli, 2013) to 

automatically formulate the MPC algorithm and implementing it for a large-scale building. This new tool 

significantly reduces the development effort of translating nonlinear simulation-oriented models into efficient 

constrained optimization problem formulations for MPC. The performance results estimated based on sensor 

measurements and meter data show that MPC algorithm reduced energy consumption by more than 20% while 

improving thermal comfort. 

 

The paper is organized as follows. Section 2 describes the HVAC system configuration and the models used for 

MPC design. The FDD algorithm design and calibration are presented in the Section 3. Section 4 presents the MPC 

algorithm and the tool chain used to automate the optimization problem formulation. Experimental results and 

performance estimates based on test data are described in Section 5. 

 

2. BUILDING HVAC AND CONTROL-ORIENTED MODELS 

 
This section describes the building HVAC system used for testing the control and diagnostics algorithm, its 

configuration, and the served zones. It also details some of the models used by the applied optimal control 

algorithm. 

 
2.1 Description of Building HVAC System 
This section describes the main HVAC subsystems, their local control loops, and instrumentation. The HVAC 

system has a centralized architecture in which a steam-to-hot-water heat exchanger plant serves multiple AHUs in 

two identical large-size buildings located at the Navy Recruit Training Center, Great Lakes, IL. The HVAC systems 

consist of three Air Handling Units (AHU) serving 57 Variable Air Volume (VAV) units. Each of these AHUs 

serves 18 VAV units located in 9 compartments, each with a capacity of several tens of occupants, which are 

occupied during night-time. The temperature set point is based on a circadian variation, with higher set points 

(during cooling season) during night-time. This schedule is programmed in the BAS and is identical for all zones; 

there are not thermostats in the zones.  

 

The focus of this effort in on AHUs and their VAVs which are instrumented as detailed in Table 1. The local control 

algorithms for each of the subsystems of Table 1 are based on PI and rules as described below: 

 The VAV dampers 
iVAVd  and re-heat coil valves 

iVAV  are controlled based on two coordinated Proportional-

Integral algorithms and rules that are driven by the zone set point tracking error. The local controllers seek to 
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maintain the zone temperature within comfort bands ],[ ,, ii SUBSLB TT  that change at pre-scheduled intervals, and 

repeat every 24 hours. The discharge air temperature to each zone is controlled in open-loop (due to a lack of 

discharge air temperature sensors for most of the units). The volumetric air flow rate 
iVAVV  is controlled by 

modulating the VAV damper 
iVAVd  to meet the scheduled set point. 

 The AHU fan speed is controlled in order to maintain pressure set point scheduled in BAS. The by-pass face 

damper and the heating coil valve are controlled based on a loop that tracks a discharge air temperature set point. 

The OA damper is controlled to maintain a minimum MAT set point (during the heating season), which is 

coordinated with the freeze-protection control rule. 

                    
 

Figure 1. Signal flows of the VAV local control loops corresponding to supply air flow rate and zone temperature;        

Signal flows of the AHU local control loops corresponding to mixed air and discharge air temperatures         

 

Table 1. Instrumentation of the HVAC systems 

 AHU Instrumentation VAV Instrumentation Spaces 

Common 

sensors 

(baseline 

installati

on) 

 Discharge air, mixed air, and return air 

temperature sensors; damper and valve 

position sensors 

 Fan VFD speed and power meter  

 Volumetric air flow rate 

metering station 

 Re-heat coil valve position 

sensor 

 Zone 

temperature

, CO2 

sensors 

Special 

sensors 

instrume

nted for 

this 

effort 

 One AHU was instrumented with BTU 

meters for both heating and cooling coils, and 

volumetric air flow rate metering station 

 The same AHU was instrumented with more 

accurate averaging mixed and discharge 

temperature sensors 

 Forecast of outdoor air temperature 

(downloaded on-line from NOAA)  

 Three VAVs have been 

instrumented with BTU 

meters, inlet air 

temperature sensors, re-heat 

coil valve position sensors, 

and damper position 

sensors 

 18 VAVs have been 

instrumented with 

discharge air temperature 

sensors 

 Zone 

relative 

humidity 

sensors 

Common 

actuators 

 Dampers: face by-pass damper, which 

controls the mixed air flow portion through 

the heating deck; outdoor air and return air 

dampers 

 Heating and cooling coil valves 

 Dampers 

 Re-heat coil valves,  
 

 

2.2 Control-Oriented Models 
This section describes the models used for the MPC algorithm design. In view of the time-scale separation of the 

zone temperature dynamics (with a time response in the order of tens of minutes) and HVAC subsystems (with a 

time response at most a few minutes), the only dynamical model considered in this approach corresponds to the zone 

temperature dynamics. The following models are developed at steady-state: outdoor air fraction model; mixed air 

temperature model; AHU heating coil model; AHU total air flow rate model; AHU supply fan model; VAV re-heat 

coil model. All expressions considered in this model are polynomial in order to facilitate derivations of first and 

second order derivatives required for the optimization solver, as explained in Section 4.2.  
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After testing several ARMAX models (Auto-Regressive Moving-Average with External Disturbance), the following 

nonlinear ARX model was selecting for representing the dynamics of the zone temperatures: 

 
iiii

iiii

SSSsaSsaOAOA

SSSS

dkTkTkmkTkT

kTkTkTkT





)()()()1()(                   

)2()1()()1(

,,21

321




  (1) 

where we used the notation as defined in the Section Nomenclature, the sampling time is 5 minutes, and parameters 

iiiiii SSSSSS d,,,,, 2,1,3,2,1,  are identified using several measurement tests. A subset of the measurement sets 

was generated from experiments designed with selected input profiles; another subset was selected from historical 

data. The controlled test inputs are AHU heat coil valve position HCAHUv , , the VAV re-heat coil valve 

positions HCVAVi
v , , and the VAV supply air flow rates

iSsam ,
 ; a set of data is illustrated in Figure 2 (left). Although 

these tests were applied to all three AHUs and their corresponding VAVs, a model was used to generate estimates of 

VAV discharge air temperatures )(, kT
iSsa  for the VAVs which were not instrumented with these additional 

sensors. The ability of the models to predict zone temperature was subsequently evaluated using new sets of data. 

Such a set of data is illustrated for one zone in Figure 2 (right). 
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Figure 2. (Left) Normalized time series data of the inputs HCAHUv , , HCVAVi
v , , and 

iSsam ,
 for a system identification 

test for AHU1, and corresponding zone temperatures measurements; (Right) Model validation results using new data 

sets based on which it was concluded that the zone temperature modeling error is smaller than 2
0
F 

Table 2. HVAC steady-state models and assumptions 

HVAC Subsystems Assumptions  Equations 

Outdoor air fraction 

and mixed-air 

temperature 

 Steady-state models as functions of 

outdoor air damper, specifically for 

heating season 

OAOAOAOAOAOA cdcdcf ,0,1

2

,2   

RAOAOAOAMA TfTfT  )1(  

Thermal power of 

AHU heating coil 
 Steady-state models as functions of 

volumetric air flow rate, inlet and 

discharge air temperatures 

)( , SFMAAHUDApaSAHC TTTcmP    

AHU supply air flow 

rate 
 Constant air flow leakages in the 

supply ducts to zone VAVs 
 

i

SAVAVSASAAHUSA cmcm
i ,0,,1,

  

Electrical power of 

supply fan 
 Function of supplied air flow 

SFAHUSASF

AHUSASFAHUSASFSF

cmc

mcmcP

,0,,1

2

,,2

3

,,3

         






 

Thermal power of 

VAV re-heat coils 
 Steady-state models as functions of 

volumetric air flow rate, inlet and 

discharge air temperatures 

VAV

VAV

c

HCc

VAVSA

inHCW

VAVAHUSAVAVSA v
m

T
cTT ,1

,2

,

,,

,3,, 
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All HVAC subsystem control-oriented models are determined at steady-state due to their faster time response (one 

order of magnitude) relative to the zone temperature dynamics. The HVAC subsystems, their models and main 

assumptions are included in Table 2 (using the notation described in the Nomenclature section). 

All the steady-state models of Table 2 have been calibrated and validated with multiple sets of data. The histograms 

of the validation errors, between model predictions and measurements, are illustrated in Figure 3. Constraints related 

to the size of this paper preclude inclusion of additional time series data and more detailed discussions of the 

assumptions and restrictions of these models. 
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Figure 3. Histograms of the validation errors for all models of Table 2 (in the same order as in the table: mixed-air 

temperature; AHU heating coil thermal power; AHU supply air flow rate; AHU supply fan power; VAV re-heat coil 

thermal power) 

 

3. FAULT DETECTION AND DIAGNOSTICS ALGORITHMS 
 

This section describes the implemented FDD system which uses a data-driven methodology integrated with domain 

knowledge to detect and diagnose faults. The FDD tool-chain includes a data-driven, off-line step of learning the 

nominal behaviors and an on-line step of detecting off-nominal behaviors. Data-driven methodologies have several 

advantages, such as low-cost commissioning, scalability, adaptability to system variation/evolution, and limited 

requirement of domain knowledge. The selected data-driven method consists of a graphical-network-based approach 

which allows encoding the background domain knowledge and physics-based understanding of the system, while 

allowing discovery of new relationships within data streams using structure learning algorithms.  

 

The FDD tool-chain used in this project primarily has the following steps: 

 Data acquisition. Data-driven methods require sufficient data in order to reliably model a complex system. Data 

sufficiency involves two major aspects: spanning the operating space, and statistically significant amount of data. 

Both historical data and functional tests have been used in order to generate enough data to model discrete 

graphical models for different building subsystems.   

 Data pre-processing. The two major steps are: data quality verification, and data abstraction for modeling. In the 

data quality verification step, sensor observations are checked for data ranges, rate of changes and communication 

reliability. In order to prepare data for discrete probabilistic graphical models, continuous sensor observations 

were discretized using various techniques including equal-width, equal frequency and Maximally Bijective 

Discretization (Sarkar et al. 2013). 

 Model learning. The graphical structure of the FDD model is learned in an exclusively data-driven manner to 

discover relationships between variables inherent in the data. The structure is then validated against domain 

knowledge and physics based understanding of the system. Using a goodness-of-fit metric that is based on 

accuracy of prediction of selected critical variables, model parameters are adjusted to achieve a good fit. The 

graphical network model for FDD is used to analyze new validation data to generate an anomaly score quantifying 

the extent of departure from the nominal performance of variable, given the measurement of other related 

variables. Based on the anomaly scores and a suitably chosen threshold, faults can be detected in any variable of 

the FDD model. The flagged events were then verified against ground truth.     

 On-line detection. Probabilistic graphical models are built for each relevant building sub-system.  

 

The developed FDD algorithms and their graphical representations are discussed and illustrated in Table 3 and 

Figure 4, respectively. The graphical network models were calibrated and validated using multiple sets of data 

generated by overriding the BAS commands. Figure 5 contains the results of a validation test for the FDD algorithm 

associated with the OAd damper. In this case a fault was seeded by overriding the damper command to 85% open, 
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while the BAS command was only 40%. Using the sensor information from several temperature sensors, the FDD 

algorithm detected correctly the seeded faults.  

 

Table 3. FDD approach details corresponding to AHU subsystems 

Subsystem Faults FDD graphical model nodes 

VAV 

terminal 

unit 

 Damper 
iVAVd : stuck; air leakages; sticky 

 Valve HCVAV i , : stuck; leakages; sticky 

Damper position, supply air flow rate, heating coil 

valve position, and air flow thermal power 

AHU 

 Damper OAd : stuck; air leakages; sticky 

 

Damper position, estimated outdoor-air flow fraction 

(based on temperature measurements) 

 Valve HCAHU , : stuck; water leakages; 

sticky 

Heating coil valve position, air flow thermal power, 

air flow rate, face by-pass damper position, difference 

between inlet and outlet water temperatures 

 Fan: capacity and efficiency changes Fan speed, electrical power, supply static pressure, air 

flow rate 

 

              
Figure 4. Graphical FDD models for the following actuators: outdoor air damper (left); 

 AHU heating coil (center); AHU fans (right) 
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Figure 5. Illustration of validation test data for the FDD algorithm associated with outdoor air damper 

Outdoor air damper: BAS command, which was overridden; estimated position (top); outdoor air fraction (middle); 

fault flag (bottom) 

 

A small delay in generating the fault flag is observed and this is implemented in the algorithm to ensure that the fault 

persists for some time before it is flagged, and therefore reduce potential false alarms. More experimental data sets 

are presented and discussed in Section 5. 
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4. MODEL PREDICTIVE CONTROL AUTOMATED FORMULATION AND 

IMPLEMENTATION 
 

This section describes the MPC problem, the hierarchical control architecture in which it is implemented, and the 

automated tool chain employed for its formulation. 

 

4.1 Model Predictive Control Formulation  
An MPC algorithm is implemented to generate real-time optimal set points for the building HVAC subsystems by 

searching for the most energy efficient control input sequences subject to system constraints (thermal comfort, 

component performance) and disturbances (weather, internal loads), similarly to the implementation in (Bengea et 

al. 2014). The MPC algorithm is implemented at the supervisory level in a hierarchical architecture whose signal 

flow is illustrated in Figure 6.  

 

VAV
Control

Zones
Weather 
Forecast  

Sensor Data 
(Described in 

Table 1)

Supervisory 
Fault-

Tolerant 
System

Optimization 
Algorithm

Local Control
(Illustrated 
in Figure 1)

AHU
Control

Prediction Models 
(Described in Table 2)

Heating
Plant

Building 
AHUs and 

VAVs 

Set Points

Component 
Constraints

Model Predictive Control

Fault-Isolation Logic
Bayesian Network Models 

(Described in Table 3)

Fault Detection and Diagnostics

Sensor Data

Component Faults

 
Figure 6. Hierarchical architecture of the fault-tolerant system 

 

The MPC formulation integrates in the same framework the control-oriented building-system performance and zone-

temperature models described in Table 2, and operational and thermal comfort constraints. The algorithm is 

formulated as a deterministic optimization problem as described below, where we use the same notation as in 

Section Nomenclature and all the models are described in Section 2.2. The problem is formulated separately for each 

AHU and served VAVs and spaces. 

Objective cost:   









f

i

iiii

t

t VAV

LBSUBSSHCVAVSFAHUHCAHU TTTPenaltyPPPMin
0

),,( ,,,,,  (2) 

Optimization 

variables (21 

control inputs): 

VAV air flow rates 
ref

SAVAV i
m ,
  and re-heat coil valve positions HCVAV i

v , , AHU 

discharge air temperature 
ref

DATAHUT , , and damper positions OAd and MAd  
 

Subject to: Equality constraints for AHU, VAVs, and zone temperatures from Table 2  

 

AHU inequality 

constraints 

),( ,

max

,, AHUSAMADATAHU

ref

DATAHU mTTT   (3) 

 
max

,, SAAHUSAAHU mm    (4) 

 1min,  OAOA dd , 10  MAd , 10 ,  HCAHUv  (5) 

 VAV inequality 

constraints 

max

,, SAVAVSAVAV ii
mm    (6) 

 10 ,  HCVAVi
v  (7) 

The lower and upper bounds min,OAd  is preset as an operation constraint. The comfort constraints are formulated as 

soft constraints via function ),,( ,, LBSUBSS iii
TTTPenalty  in (2), which penalizes the excursions of the zone 

temperature outside of the comfort band ],[ ,, UBSLBS ii
TT which is scheduled for each zone and is time-dependent. 
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The soft-constraint formulation does not causing any infeasibility issues when some zone temperatures may leave 

the comfort band (e.g. due to different actual loads than forecasted).  

 

The above optimization problem is solved at 15 minute time intervals and consists of: updating the sensor 

measurements and weather forecast; estimating temperature states; diagnosing component faults; generating 

optimized set-points for the entire four-hour prediction horizon; communicating the new set point values (only for 

the next sampling time) to BMS.   This repeated calculation of set points ensures solution robustness and optimality 

by using the most recent measurements and outdoor temperature forecasts.  

 

The optimization problem formulation workflow—the process by which the above mathematical problem is 

converted into an optimization algorithm— is illustrated in Figure 7. 

 

4.2 Automated Optimization Problem Formulation 
The MPC algorithm formulated in Section 4.1 was converted into an optimization problem by using The Berkeley 

Library for Optimization Modeling (BLOM) (Kelman et al. 2013). BLOM bridges the gap between simulation 

oriented tools (Simulink, Modelica, etc.) and optimization oriented tools (Kallrath 2004, Soares et al.  2003). BLOM 

is based on a new formulation for representing linear and nonlinear mathematical functions that aims to address 

some of the limitations of simulation-oriented tools. This formulation allows for direct computation of closed form 

gradients, Jacobians and Hessians. The initial model formulation interface is based on Simulink, and BLOM 

provides a set of Matlab functions which transform a Simulink model into an optimization problem using our 

representation format. This problem representation is then used in a compiled interface to an optimization solver 

such as IPOPT (Wächter et al. 2006). BLOM consists of three main parts. First, there is the Simulink front end, 

where a dynamic model is represented using built-in Simulink blocks and the BLOM library blocks. Second, a set of 

Matlab functions is used to convert a Simulink model into the internal mathematical representation described in 

(Kelman et al. 2013). Lastly, this problem representation is used by an interface to an optimization solver such as 

IPOPT. The BLOM front end for Simulink includes (in addition to the regular Simulink blocks) inequality, cost 

function, and designation of variables as free optimization variables or set by a user. 

 

As shown in Figure 7, first, a model is created in Simulink and validated using forward simulation. Second, the 

model is converted to an optimization problem and exported to a solver (IPOPT). Third, a problem data is supplied 

and a solution is obtained. The third step is repeated, with a new state measurement every time step. For efficient 

online solution of a large nonlinear MPC optimization problem in real time, it is critical that the sparsity structure of 

both the spatial connectivity in the model and the temporal causality over the MPC prediction horizon are captured 

and represented in the optimization formulation. BLOM is designed using an efficient sparse nonlinear problem 

representation in order to capture this information from the system model in a way that the optimization solver can 

fully utilize. 

Forward simulation 
Model validation

Auto translation
Export opt. problem

BLOM EPMO model

 optimal control

Problem data IPOPT

 
Figure 7. The main steps for converting the MPC algorithm into an optimization problem formulation using BLOM 

Table 4 presents typical performance of the BLOM library with IPOPT solver for the MPC problem formulated in 

Section 4.1. We present the execution time of problem solution for various problem sizes. The table shows that even 
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for very large problems with more than 10000 variables and constraints, the library achieves good performance and 

IPOPT converges quickly to a Karush-Kuhn-Tucker point of the constrained finite-time optimal control problem. 

 

Table 4. BLOM execution results 

Prediction horizon length (steps) 20 30 50 

Number of variables in solver 11180 16770 27950 

Number of constraints 8777 13252 22202 

Non-zeros in Jacobian and Hessian 31682 48227 81317 

Number of solver iterations 91 142 128 

Total solution time [sec] 6.6 20.3 46.8 

Time spent in BLOM callbacks 34% 30% 29% 

 

 

5. EXPERIMENTAL RESULTS AND PERFORMANCE ESTIMATION 

 
This section presents the performance estimates generated based on multiple test conducted from Nov. 2012 to 

March 2013 for three AHUs. The performance results are described separately for the FDD and MPC algorithms. 

The section starts with a description of the method employed to estimate the overall system performance, then 

describes aggregated performance results, continue with plots of experimental data for both FDD and MPC 

algorithms and concludes with a discussion of the limitations of this performance analysis. 

 

5.1 Performance Estimation for the MPC and FDD Algorithms 
The main performance metrics addressed in this effort are: overall energy consumption, peak power, comfort, and 

percentage of faults identified correctly. The overall energy (power) consumption was calculated using both 

electrical energy (power) consumption (for fans) and thermal energy (power) consumption for heating heat 

exchangers. The overall energy (power) consumption was estimated by converting the thermal component to an 

electrical component using the estimated Coefficient of Performance (COP) of the heating plant. The comfort 

criteria was initially intended to be addressed as a hard constraint (as a band around zone thermostat set points), but 

it was observed that the baseline control algorithms did not meet this constraint for several time intervals every day. 

Therefore a more realistic criteria was used that estimates comfort violations (during the heating season) as 

 

dttTtT

f

ii

t

t

SLBS 

0

))()(,0max( ,                                      (8) 

which represents the accumulated time interval over which the comfort constraint is not met (during the heating 

season) weighted by the level of constraint violation.  

 

We present first the overall results generated based on the sensor and meter data recorded from the demonstrations 

conducted during the heating season 2012-13. The overall results are illustrated in Figure 8 for each AHU, relative 

to the baseline BAS schedule performance; the performance targets are illustrated as horizontal red lines. 

 

The overall FDD algorithm performance was estimated using sensor and meter data recorded during multiple test 

windows. Based on this data, it was estimated that the FDD algorithm correctly diagnosed the HVAC subsystem 

faults in 84% of the cases (level illustrated in Figure 8), missed the detection of 6% of the events, and generated 

false alarms in 10% of the total events which consist of equal number of seeded and non-seeded (real) faults. The 

seeded faults were implemented by overriding the commands communicated by the controllers (with the BACNet 

message priority set at a value that enables the override), without communicating these overrides to the FDD 

algorithm. An example of a correctly diagnosed damper fault is illustrated in Figure 9 were the trained VAV FDD 

algorithms correctly diagnosed the damper-stuck faults. Upon this fault diagnostics, this particular fault was 

confirmed by investigated the actual VAVs.  
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Figure 8. Illustration of the overall results generated during the demonstrations for MPC and FDD algorithms for 

each of the AHUs for the following objectives: energy consumption reduction, peak power reduction, thermal 

discomfort reduction, and fault diagnostics system robustness. 
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Figure 9. Comparisons between nominal (healthy) and faulty VAV units 

 

The lack of sufficient instrumentation and the inaccuracy of sensors for building HVAC systems present significant 

challenges that result occasionally in miss-detection or false positive classifications. Particularly for high capacity 

HVAC units, with large air duct diameters, the inaccuracies of air temperature sensors at different location can result 

in false positive FDD outcomes. Several data sets are illustrated in Figure 10, where the following inconsistencies 

are observed: (i) when OAd closes, MAT  increases and gets closer to RAT  as expected, but there are also time 

intervals over which MAT  exceeds RAT ; (ii) MAT  exceeds HRT  when OAd  is fully open; (iii) MAT  exceeds HRT and 

RAT , which have similar values, by about 5
0
F. In all these cases, the FDD algorithm can trigger false alarms on 

some time sub-intervals. The limited sensor set data cannot be used to distinguish between multiple cases: mis-

calibrated sensors; leakages that depend nonlinearly on damper positions; non-mixed air flows with non-uniform 

temperatures. In view of these limitations, the outdoor air damper faults that are seeded correspond to large 

variations in OAd in the interval [30%, 70%] opening; where the lower bound is imposed by fresh air constraints, 

and the upper bound was selected to avoid case (ii) discussed above. With this limited range on the outdoor air 

damper seeded-faults, which minimize the rate of false alarms for this damper, the false alarms are mostly generated 

for cases when large changes in set point values occur.  
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Figure 10. Illustration of the outdoor air damper positions and impacted temperatures for three scenarios described 

above the figure 

 

For each AHUi, 3,2,1i , the results in Figure 8 are generated by averaging its performance over all demonstration 

days using the following formula for energy savings, peak power reduction, and thermal discomfort: 
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  (9) 

 

which calculates two averages: the first is across all MPC algorithm demonstration days, jMPC , and the second is 

for all the baseline days kBaseline  (during which the HVAC system is controlled by the baseline algorithm) that 

are selected to be compared against the performance results generated in jMPC  demonstration day. This selection 

is discussed in the following. 

 

In lack of sufficient large sets of test data, a criteria has to be used for selecting specific baseline days and MPC 

demonstration days for conducting performance analysis. The criteria selected for this analysis is based on ambient 

temperature; this selection was based on the assumption that, in lack of occupancy data, as is the case with many 

demonstration sites, the ambient conditions generate the largest disturbances that have to be rejected by HVAC 

system. Such a selection is illustrated in Figure 11 (left) where the ambient-temperature time series data for one 

MPC day and the corresponding baseline days are plotted.  
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Figure 11. Illustration of ambient temperature during an MPC demonstration day (red) and selected baseline days 

with similar ambient temperature pattern (left). Temperature values corresponding the MPC and baseline controllers 

for the same days (right). 

 
The same figure also illustrates (right plot) the zone temperatures generated with the corresponding algorithms 

during the same days as selected in the left plot. The performance of the MPC algorithm and the baseline algorithms 

during these days is further detailed in Figure 12 which illustrates that the baseline algorithms does not meet comfort 

when the set point values are changed (according to the circadian schedule implemented in BAS). In order to meet 

the thermal comfort constraint when the set point value is increased (during heating season) the MPC algorithm’s 

peak power value exceeded the baseline algorithm’s peak power values. 

 

Comfort Violations

MPC

MPC worked harder to maintain the comfort (higher peak demand)

MPC

Peak Demand

 
Figure 12. Illustration of temperature comfort violations, AHU heating coil power, fan power and total VAV thermal 

power during the same days as those illustrated in Figure 11. 

 
The bar graphs in Figure 13 and 14 further illustrate a subset of the test data based on which the performance metrics  

in Figure 8 where calculated (using formula (9) and three baseline days with closest ambient temperature values for 

each MPC day). Energy consumption and peak power reduction levels are illustrated in Figure 13, where negative 

values in the peak power bar graph mean that MPC algorithm used higher power levels. The mean zone CO2 levels 

and comfort violations are illustrated in Figure 14. 

 

Day 1  Day 2  Day 3  Day 4  Day 5

MPC 923.1 3328.5 4440.4 3794.8 1475.9

Avg. Baseline 1522.7 4709.0 4500.4 3449.5 2159.9
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Figure 13. Total energy consumption and peak power reductions of MPC and baseline algorithms  
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Day 1  Day 2  Day 3  Day 4  Day 5

MPC 850.8 768.7 781.5 836.9 776.3

Avg. Baseline 589.8 586.1 711.6 647.8 521.4
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Figure 14. Mean zone CO2 levels and temperature comfort violation levels for MPC and baseline algorithms 

 

5.2 Limitations of the Performance Estimation Method 
There are several limitations in the calculation of the performance estimates of the FDD and MPC algorithms and 

these are reviewed and discussed below for each algorithm. For FDD algorithm these limitations are consequences 

of the following factors: 

 Only single faults are considered in this effort, and they are exclusively assigned to actuator faults; except for 

these faults, the HVAC units were considered otherwise healthy. As previously mentioned, it is not possible to 

distinguish between all possible faults that can occur with a limited sensor and meter data set. 

 HVAC control systems have a large degree of fault-accommodation without explicitly estimating any faults. An 

example is discharge air temperature control loop at AHU level which controls the volume flow rate of the 

mixed airflow through the heating coil deck and the heating valve position. Even in the presence of faults 

associated with any of these two actuators, their local controllers can maintain a desired discharge air 

temperature set point. However, a large number of combinations between this flow rate and the heating valve 

positions can lead to the same temperature differences between the mixed air and discharged air. Without 

intermediate sensors for measuring the inlet temperature to the heat exchanger, an FDD algorithm has limited 

information for detecting any faults associated with these two actuators when using only data generated with the 

local controllers. 

 The FDD performance reported in Figure 8 corresponds only to the units that were instrumented with additional 

sensors (as described in Table 1).  

 

The estimation of the uncertainty magnitude in the reported performance levels of the MPC algorithm is limited by 

factors related to sensor instrumentation and test data size: 

 Although the performance levels are estimated using measurement data from 26 days distributed unevenly 

during the entire heating season 2012-13, it is unclear whether the distribution of the internal loads and ambient 

conditions was representative for all heating seasons in the selected buildings. The level of sensor 

instrumentation needed to generate these estimates is beyond the level of instrumentation in standard 

commercial buildings, such as those used as for demonstrations for this effort. Therefore an extrapolation of the 

results in Figure 8 to other heating seasons, ambient conditions, or usage patterns cannot be made directly. We 

note, however, that large levels of energy savings were also demonstrated for a smaller AHU, similar ambient 

conditions, and different HVAC configuration and usage patterns (Bengea et al. 2014). 

 The method used for MPC performance estimation is based on the assumption that the largest disturbance is 

ambient temperature, and therefore similarity in the outdoor air temperature patterns is the most important 

criteria when selecting multiple sets of days for performing energy consumption comparisons. When 

sufficiently large sets of data available, using multiple criteria would increase the accuracy of the performance 

estimates.  

 Less than 30% of the models are validated. Due to limited sensor instrumentation for two of the AHUs (“B4 

AHU2” and “B3 AHU1” in Figure 8), the AHU and VAV heat exchanger models could not be validated. 

Therefore the VAV re-heat coil energy consumption for these AHUs were estimated using the same models as 

those used for the AHU for which additional sensors were instrumented (as described in Table 1). 

 The MPC algorithm does not use zone occupancy models and therefore does not control directly the CO2 levels 

in the zones. The MPC algorithm met the minimum outdoor air damper constraint (designed for the baseline 

algorithm to meet the fresh air requirements). However, after the demonstrations it was observed that the MPC 
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algorithm consistently increased this level in all zones by about 35% on average (across all zones served by all 

three AHUs). The limitations in the sensor and meter data prevent detailed estimation of specific portions of the 

reported energy consumption levels in Figure 8 that are due to decreasing the outdoor air damper position 

(while still meeting the minimum damper-position constraint), meeting different occupancy loads, and 

increasing thermal comfort. 

 

8. CONCLUSIONS 

 
The paper presents the design, implementation, and performance results of two model-based algorithms based on 

tests conducted in two large-size commercial buildings during the heating season 2012-13. The MPC algorithm uses 

sensor data to generate periodic updates of AHU and VAV unit set point values that reduce energy consumption 

while maintaining all zones temperatures within a comfort band. The FDD algorithm uses sensor and meter data to 

isolate on-line faults associated with the AHU actuators. The individual performance benefits of the two algorithms 

are estimated based on test results compared against historical baseline data generated during test periods with 

similar ambient conditions. Although the energy performance depends on uncertainties which cannot be completed 

characterized with limited data, the results demonstrate the potential of the algorithms to reduce energy levels to 

levels that provide favorable cost benefits.  

 

NOMENCLATURE AND MATHEMATICAL NOTATIONS 

 
AHU Air Handling Unit 

BLOM Berkeley Library for Optimization Modeling 

BMS Building Management System 

CFM Cubic Feet per Minute 

CO2 Carbon Dioxide 

COP Coefficient of Performance 

FDD Fault Detection and Diagnosis 

FTC Fault-Tolerant Control 

GPM Gallon per Minute 

HVAC Heating, Ventilation and Air Conditioning 

IPOPT Interior Point OPTimizer 

MPC Model Predictive Control 

NOAA National Oceanic and Atmospheric Administration 

VAV Variable Air Volume 

VFD Variable Frequency Drive 

iSsam ,
 and 

iSsaT ,  Mass flow rate and temperature of supplied air to space iS  

OAT , MAT , RAT  Temperatures of Outdoor Air (OA), Mixed Air (MA), and Return Air (RA), respectively 

iST , UBSi
T , , LBSi

T ,  Air temperature in space iS and upper (set point during cooling season) and lower (set 

point during heating season) bounds of the temperature comfort band for space iS  

OAd , MAd , RAd , 

FBDd  

Damper positions for Outdoor Air (OA), Mixed Air (MA), Return Air (RA), and by-pass 

air flow streams, respectively 

AHUsaT , , HDT CDT  Temperature of air supplied by AHU (downstream of hot and cold decks; upstream of VAV 

units); Temperature air discharged at the outlet of the hot and cold decks, respectively 

OAf  Ratio between mass flow rate of outdoor air flow and mass flow rate of the mixed air flow 

HCAHUv , , HCVAVv ,  Normalized position of the heating coil valve (the subscript makes it clear whether this 

belongs to the AHU heating coil of VAV re-heat coil 

P  Power (thermal or electrical) 
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