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Abstract—We present elements of a pervasive computing
enabled modeling environment for integrated national energy
systems (CI-MINES) to support policy and decision making as
it pertains to co-evolving socio-energy systems. Decision support
systems built using CI-MINES will provide public policy makers
as well as private stakeholders entirely new ways to design and
architect next-generation energy systems. When complete, CI-
MINES can be used to evaluate the relative merits of competing
conceptual architectures for interactive energy grids and markets
before substantial investment is made in realizing them. It will
also help evaluate new ways to invest in renewable energy
sources and assess the reliability and security of the emerging
grid architectures. CI-MINES is based on recent computational
advances for modeling extremely large, complex, multi-scale
socio-technical systems.

I. INTRODUCTION

The US needs to develop a coordinated program to architect
and build the next generation power grid or Smart Grid,
harness renewable energy sources and reduce its carbon foot-
print while expanding generation and distribution capacities
(see [3] for additional details). It is envisaged that a Smart
Grid will allow household appliances to communicate with
utility services through home computers and mobile devices,
adjust consumption based on real time prices, and be able to
sell electricity back into the grid generated from renewable
sources, or stored in through their plug-in electric vehicles.
This requires consumers to act as suppliers at times and the
grid to be able to handle two-way flows.

These kinds of challenges can be best understood and
addressed through an integrated energy systems environment
which represents all aspects of a “Smart Grid”— this in-
cludes the communications system, real time demand side
management, regulation, monitoring, micro-grid, distributed
generation, cyber-security etc. In this paper, the term Smart
Grid is often used as a short hand for the “integrated energy
systems”.

The advancement of technology has caused consumers to
add more electronic devices to their homes, such as mi-
crowaves, computers, smartphones, HD TVs, etc. and this has
resulted in additional challenges for the grid. These devices
are much more sensitive to voltage fluctuations than tradi-
tional appliances. Further, urbanization and globalization have

created population centers in remote places which are located
far from the generation sources. This requires transmission
infrastructure to be able to carry power to long distances. In
the West coast, frequent oscillations occur in the power due to
this factor. If the oscillations are severe it can cause automatic
shutdown of power to protect equipment as was the case in
1996 blackout [1].

Adding monitoring, control and communication to the
electrical delivery system can optimize the electrical usage,
improve the reliability of the old grid through distributed in-
telligence, consumers’ engagement in demand responsiveness,
and adoption of more renewable sources of energy. Studies
have shown that consumers can be incentivized to be more
energy efficient if they were made aware of the social norms
and given peer comparison feedback [10], [34]. Experiments
have been undertaken where the utility companies have mailed
the energy bill to the households along with a report that
compares the current usage with the prior months usage and
with the peers usage. It also provides the usage rank to the
household compared to the average and the most efficient
homes in the neighborhood. Households that receive such
a report show a consistent and sustained reduction in their
energy usage. These studies suggest that policy makers can
impose mandatory peer reporting and other similar instruments
to cut costs and improve carbon savings. This is particularly
important since the utility companies do not have the incentive
to nudge consumers to reduce energy consumption [35].

A better management of energy demand especially during
the peak periods will save billions of dollars as the utilities will
not need to build, maintain and operate peaking plants that are
brought on line only during emergencies or satisfy extreme
levels of demand. Advanced metering infrastructure (AMI)
allow two-way communication between the utilities and the
consumers or their appliances. It provides time stamped energy
consumption data which can help with grid management,
smoothing out the load curve and more actionable saving
options to the consumers [4], [25]. The existing automatic
meter reading (AMR) only allows one-way communications
but is cheaper than the AMI.

A comprehensive national energy plan is being developed
to implement this vision [3]. The plan recognizes that energy
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system modernization poses evolving scientific, policy and
design challenges that test the limits of current understanding.
At the same time, a revolution in networked information
technology is proliferating digital devices that, by ubiquitous
and varied measurement and interaction with the end users and
the underlying energy system, will provide context-rich infor-
mation and services to producers, distributors and consumers
in the energy system. Collectively such networked devices
will provide a rich and individualized pervasive computing
environment, by measuring and interacting with the end users,
their activities and the underlying energy system [32], [33].

Advances in technologies for computing, communication
and power electronics provide entirely new ways to re-
architect energy systems - from generation to transmission,
distribution, control and protection. Modern communication
networks will provide novel ways of measuring, controlling
and disseminating information about energy systems and pro-
vide pathways for social, economic, and control networks to
interact with the power networks [36]. Consumers can be
active participants, adapting their behavior to time-dependent
price information [24]; operators can monitor and control
the grid in near real time to control cascading failures or
to manage distributed generation facilities [27]. Economic
decisions can be made on shorter time scales. Economics,
social constraints and communication technologies will thus
play a critical role in this redesign [29], [31]. Unfortunately,
the resulting complex, coupled system designs will exceed
the analytical capabilities of current models. Making rational
infrastructure investment decisions will require models that
go far beyond current capabilities that often represent each of
these individual components. The next generation tools will
have to allow analyst to undertake not just static analysis but
fully dynamic analysis of the interdependent networks that
will constitute the Smart Grid. Figure 1 gives an overview of
the interaction among the various human, social, informational
and infrastructural layers.

Although the power network and, the monitoring and
control networks, are strongly coupled, they are typically
studied and modeled separately. As a result, questions about
interdependent dynamics, e.g. cascading impacts and unin-
tended consequences across multiple networks are often poorly
represented. From design, R&D directions and policy per-
spectives, this is problematic because designs for a national
Smart Grid will have to incorporate and exploit comprehen-
sive understanding of interdependent networks and processes.
Technologies - including distributed generation, micro-grids
and market regulatory mechanisms - will lead to market ineffi-
ciencies, suboptimal incentive structures for renewable energy
and unintended gaps in reliability and security if integrated
system-level analysis is not properly supported. Furthermore,
the coupled networks co-evolve (as illustrated in Figure 1), and
changes in one network affect how other networks operate;
this is further complicated by changes in user behavior. In
other words, next-generation energy systems networks cannot
be effectively designed, analyzed and controlled in isolation
from the social, economic, sensing and control contexts in
which they operate.

Here, we propose CI-MINES as a pervasive computing en-

abled modeling environment for studying and supporting pol-
icy and decision making in integrated national energy systems.
CI-MINES can be applied to address a variety of practical
issues related to Smart Grid, e.g. enabling active participation
by consumers through demand response programs, enabling
new policy instruments to incentivize efficient consumption
and production, optimization of electrical assets and operations
etc. It can help policy makers adapt to evolving market designs
and market forces e.g. understanding price responsiveness as
green cars and environment friendly vehicles create significant
challenges for sustainable energy infrastructure as well as two
way flow of electricity on the grid.

Fig. 1: Schematic diagram representing the multi-
layer interaction of human, social and integrated en-
ergy networks. Individual behaviors, networks, poli-
cies and dynamics co-evolve leading to complicated
inter-dependencies.

II. CI-MINES

We describe our ongoing efforts to develop CI-MINES:
Pervasive computing enabled modeling environment for In-
tegrated National Energy Systems. CI-MINES will fill an
important technology gap in design and analysis of the next
generation integrated national energy systems. It will support
public and private stakeholders as they respond to the national
goal of building resilient and sustainable energy systems. Sev-
eral components of CI-MINES have already been developed.

A. Conceptual and System Architecture

A conceptual architecture of CI-MINES is shown in Fig-
ure 2, and is intended to model co-evolving networks depicted
in Figure 1. It consists of four inter-related modules: (i) Data
collection, (ii) Data integration and query processing, (iii)
Model formation and network dynamics (MINES) and (iv)
Model driven decision support. The first module collects data
on humans, buildings, behavior, socio-demographics, social
norms, usage history etc. This module pulls together data
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from various human as well as electronic sensors. In addi-
tion to electronic sensors including PMUs, SCADA systems
and next generation metering system, we are creating an
infrastructure wherein crowd sourced information can also
be accessed seamlessly. The second module is tasked with
integrating data collected by the first module and processes
them using centralized as well as distributed methods. The
third module synthesizes coupled networked representations of
(i) infrastructure networks, including electricity grid, SCADA
networks and (ii) various social and economic networks that
are coupled to the infrastructure networks. The last module
comprises of various dynamic models that can be used to
reason about the dynamical evolution of the co-evolving socio-
energy network.

B. System Architecture and Associated Cyber-Environment

Figure 3 gives an overview of CI-MINES. An initial version
of the system called Simfrastructure has been developed
and being used for reasoning about other socially coupled
systems [23]. Simfrastructure is a powerful middleware that
allows diverse computing systems, models and databases to
interact seamlessly. The CI we are developing consists of
mechanisms to allow end users access to very large, complex
models over the web, a data management environment to
support analysis and data and a visual analytics environment
to support decision-making and consequence analysis. Just
as the advent of search engines, such as Google, radically
altered research and analysis of technical subjects across the
board, Simfrastructure is designed with the goal of making
computational, modeling and data resources seamless, invis-
ible, and indispensable in routine analytical efforts. When
extended, Simfrastructure will be able to connect: (i) MINES,
(ii) web-based graphical user-interfaces for interacting with
MINES, (iii) tools and environments for visual analytics and
decision support and (iv) environments for collecting and
integrating diverse data sets that MINES hopes to use. In
other words, Simfrastructure can be viewed as a pervasive
cyber-environment that supports MINES-based analysis and
reasoning.

C. MINES

Mines is the modeling component of CI-MINES. It com-
prises of three elements: (i) a set of models for synthesizing
and modifying networks, (ii) models and tools for representing
individual and organization behavior and (iii) dynamical mod-
els that tie (i) and (ii) and allow us to represent the dynamical
outcomes. As opposed to mean field analytical models, the
models developed here are network based and algorithmic in
nature.
Synthesizing co-evolving socio-energy networks. A key el-
ement of our modeling environment is the resolution and
scale of systems that can be analyzed. Our models use
representations of individual people and explicit interaction
between these individuals and infrastructures. The methods
for modeling extremely large coupled complex networks are
based on technical advances in interaction based computing,
and high performance algorithm design and implementation.

These advances allow us to study large coupled networks
that are dynamic and unstructured. For instance, a model
representing Chicago would involve 10 million customers,
commercial locations, electrical infrastructure and associated
market components.

We have developed such models in the past for urban
transport planning, public health epidemiology, telecommuni-
cation systems, e.g., the TRANSIMS and Simdemics modeling
environments [13], [18], [20], [22], [23], [28]. Our initial work
on energy systems can be found in [6]–[9], [26]. The basic idea
is described below.

We first create a synthetic representation of each household
in a region from the US Census data; this is done by integrating
a variety of databases from commercial and public sources
into a common architecture for data exchange that preserves
the confidentiality of the original data sets, and yet produces
realistic attributes and demographics for the synthetic individu-
als. Joint demographic distributions are reconstructed from the
marginal distributions available in typical census data together
with joint distributions in Public Use Microdata Samples
(PUMS) using an iterative proportional fitting technique. A
census of this synthetic population yields results that are
statistically indistinguishable from the original census data,
if they are both aggregated to the block group level [19], [30].

Next, each synthetic person in a household is assigned a set
of activities to perform during the day, along with the times
when the activities begin and end, as derived from the activity
or time-use survey data from the National Household Travel
Survey (NHTS), and American Time Use Survey (ATUS).
This step ensures that each synthetic household is matched
with one of the survey households, using a decision tree
based on demographics such as the number of people in the
household, number of children of various ages, household
income, etc. For each person and each activity performed by
this person, a preliminary assignment of a location is made
based on observed land-use patterns, building capacity, tax
data, etc. [11], [19]. This completes the location assignment
step for each person and for each of their activities.

Synthetic individuals placed within a realistic urban context
can be composed with other aggregated as well as high
resolution data sets. For instance, in the case of telecom-
munication systems, these synthetic individuals can endowed
with demand for telecommunication resources [21], [22]. In
case of epidemics, they can be endowed with disease specific
characteristics. Synthetic individuals provide a natural way to
compose aggregated information and also to develop a spatial
model [28].

Building on our earlier work, MINES will endow synthetic
individuals with realistic spatio-temporal energy demand pat-
terns. On the spatial scale it will be at the level of buildings,
and at the temporal scale, at the level of an hour or a
few minutes. The novelty lies in combining survey based,
commercial, behavioral, census and activity data to generate
realistic location specific demand profiles. Spatial and tempo-
ral aggregation at the level of communities of firms is possible
and is currently being investigated. As people move from
location to location to support a variety of activities during
the day, the energy demand profile of the buildings change
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Fig. 2: Conceptual Systems Architecture of CI-MINES for information fusion, model execution and data processing.

Fig. 3: A schematic diagram of Simfrastructure (adapted from from [23]). Simfrastructure serves as the middleware for
CI-MINES.

dynamically. Realistic models of people mobility, specifics
of the locations, demographics of the people present at the
location etc. are needed to generate spatio-temporal demand
profiles. An aspect that is missing in [21] are models for
behavioral adaptation along with means of simulating the
dynamical outcomes of these adaptations. We are currently
investigating this as a part of a DOE funded project [2].

The electrical infrastructure elements such as the substa-
tions, transmission lines, the distribution system, load bearing
nodes, generators etc. need to be represented in detail and
placed in a common geographic coordinate system. This
detailed system will provide an end-to-end model of the people
and the electrical infrastructure. This type of model enables
one to study the effect of behavioral changes in the agents,

as caused by changes in demographics, social environment,
supply, economic factors, technological factors and public
policy, on the spatial and temporal distribution of the energy
usage. Note that realistic and implementable policies require
individual level, demographic based representations.

Mathematically, such a system can be viewed as composi-
tion of graph dynamical systems [13], [14], [16], which we
have studied extensively for applications, such as epidemics
in social networks. Key issues in integrated energy systems,
such as system dynamics and vulnerabilities, can be related to
fundamental dynamical questions in graph dynamical systems,
such as reachability, fixed points and predecessor existence.
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D. Computational Challenges

Developing scalable CI-MINES is computationally chal-
lenging. The size and scope of the co-evolving networks, sim-
ulating dynamics on such systems, managing large amounts of
data and developing pervasive distributed computing systems
all present certain generic as well as application specific
challenges. We refer the reader to [13], [23] for discussion
on this topic. Application specific challenges are numerous
and we highlight three diverse problems. The first challenge
is developing behavioral adaptation models that can represent
how users are likely to adapt (current energy systems provide
very little insights into this) when presented with meaningful
choices. A related challenge is to develop models of electrical
grid. As the grid operations and ownership is private, it is
becoming increasingly harder to obtain data about the grid.
Security concerns complicate the matters further. Both these
are data challenges: availability of data, both numeric and pro-
cedural. The second challenge is to develop scalable models
that can be efficiently mapped on high performance computing
architectures. AC power flow codes are known to be compu-
tationally expensive, DC codes can be computed reasonably
fast in isolation and often adequate. More importantly though,
power flow models have to be coupled with demand and user
behavior models as well as economic models. Our early work
[7] was largely suitable for single processor machine; we have
recently developed generic scaling methods that we believe
provide a way forward. A final challenge pertains to validation,
verification and uncertainty quantification pertaining to these
systems. Classical notions of predictive validation are simply
not appropriate when dealing with complex systems such as
integrated energy systems. The issue is not confined to energy
systems per se but any socially-coupled system.

III. APPLICATIONS AND RESEARCH AREAS

Some of the components of CI-MINES are already in place,
while others are being developed or adapted for the energy
application.

A. Case Study

We outline the following case study to illustrate the utility
of CI-MINES. The conventional transmission grid and large
sized plants such as hydro and nuclear, usually are responsible
for supplying a large fraction of the power in a region. Any
disruption to these plants and hence a steady supply of power,
whether deliberately caused by terrorists or inadvertently
caused by the system can be very detrimental to the society.
Due to the increase in the reliability needs of the consumers
and the desire to use renewable energy, distributed generation
seems an attractive supplement to the utility-supplied power.
Distributed power generation occurs at a small scale, dispersed
form, close to the load or point of consumption and does
not need to be carried over long distances through a vast
transmission grid which includes thousands of miles of high
voltage lines.

The user can design a micro grid that connects small
generators and uses renewable energy sources for fueling. The
consumers can have the option to draw electricity from either

the local micro grid or the centralized conventional grid. The
local grid offers cheap green energy, and reduces dependence
on the central transmission system. This is especially important
during the peak hours of the day. In addition it improves the
ability to smooth out the load curve which keeps expensive
peaking power plants from having to come on line. The
envisioned modeling environment outlined above can help
analyze the various aspects of such a case study and help
design new policy instruments to improve the efficiency and
robustness of our electrical infrastructure.

B. Synthetic Grid

Recent work in Network Science has demonstrated the
importance of studying dynamical phenomena of interest on
realistic networks. In the past, constituent elements of the elec-
trical network were available for research. This has changed
radically in the recent years - the primary motivations for
this change are security, privacy and proprietary concerns. The
structure of the network has a profound impact on the dynam-
ical process e.g. its ability to transfer current, its vulnerability
and reliability in the event of failures, and the market power
that gets created due to strategic locations on the network [26].
As the power industry undergoes further deregulation and sees
an influx of new players due to federal and global energy
initiatives, explicit data pertaining to the network and its
constituent elements are unlikely to be available.

We suggest that emerging technological gap can be filled
by developing methods and underlying theory that will yield
first principles based models of the national electrical network.
By first principles we imply that the generative processes are
not based on simple random graph models that, although,
mathematically appealing, fall well short of generating realistic
networks. We can build on earlier work we have done in this
area in other socio-technical networks [15].

The starting point of our work is based on two important
observations: (i) no single database is likely to contain all the
information that allows us to construct an exact representation
of the current power network; however, a large number of
data sets and expert knowledge are available so as to be
able to develop models that yield representations of power
networks that are statistically similar to real power networks
and (ii) synthetic network constructions require not just simple
data fusion and integration techniques but also require one to
appeal to social, behavioral, economic and technical theories
for filling missing data in a consistent manner. This dynamical
system based generation and synthesis of such networks is
both necessary and possible.

The synthetic electrical grid can help understand the global
properties of the underlying network that must be analyzed
in order to understand the local behavior [8]. For instance,
knowing whether the grid is one large connected component
is useful in determining the feasibility of transferring power
between any two nodes on the network [5], [7], [15], [17],
[26].

C. Individual Models of Demand Behavior

Efficient and stable markets require active participation
from both the consumers and suppliers. Demand and supply
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models are crucial for modeling the market interactions and
understanding market mechanisms. Realistic modeling of con-
sumer demand requires a combination of statistical modeling
and behavioral modeling that allows consumers to adapt to
changing market conditions.

The individual-based demand and supply models will be of
broad value in developing scale-up plans for elements of Smart
Grid infrastructure under small-scale tests, and in studies of
grid resilience during crisis conditions. They are different
than classical statistical models developed in economics that
usually assume perfect information and rational agents. Recent
research in behavioral economics is aimed at closing the gap
between real and ideal world.

In the context of power systems, such individual-based
models are important and necessary for a number of rea-
sons. For instance, issues such as responsiveness to prices,
distributed demand generation, willingness to purchase green
energy etc. cannot be studied without disaggregated modeling.
To understand the demand behavior of different end-users,
e.g. rich, poor, residential, industrial, risk averse, risk neutral
etc., it is necessary to develop an individual based system that
can accommodate individuals’ demographics as well as their
behavioral characteristics.

PDE and ODE based models inform the policy makers
as to how an average consumer will behave under various
circumstances. Although very useful in several application,
they are not suitable when one needs to represent and study
individual heterogeneity and scale. Individuals, groups and
organizations that make the consumer and supplier energy
landscape have a wide spectrum of demographic features
and behavioral attributes. Furthermore, behavioral adaptation
is extremely important to understand when developing new
energy systems. For example, the demand response to real time
prices will differ across people depending upon their socio-
economic and behavioral attributes. Individuals with higher
income are less likely to be price elastic as compared to
the lower income strata. Industrial locations are likely to
consume more electricity per capita than the residential loca-
tions. Understanding and modeling demand responsiveness in
a disaggregated way will increase the efficiency of the markets,
reduce price volatility and allocate scarce electricity resources
more efficiently [6], [9], [25].

The disaggregated demand profiles, at the scale of individu-
als, groups and geographically spread entities (e.g. company)
can be used to demonstrate how active consumer participation
can improve the efficiency of the market; how appropriate
incentives can be built to use green energy; and how energy
sustainability and security can be improved through behavioral
changes. Our preliminary results on the subject have been
reported in [7], [29], [33]. We are currently extending these
models and modeling methodologies to represent multi-scale
(time, space and organization) systems and also to represent
behavioral adaptations. As an example it would be desirable
to model demands for electricity for recharging batteries in the
next generation electric cars. Prediction in such situations is
not really feasible, nor the sole goal. Rather an important goal
is adaptation - can the models help consumers and suppliers
adapt to the changing landscape in an effective manner.

D. Market and its Interplay with the Transmission Grid

A detailed representation of the market and its coupling with
the electrical grid is needed to study the issues that lie at the
intersection of the market and the electrical infrastructure. This
coupling will enable the economic contracts to be checked
for physical feasibility on the grid. One of the goals of
CI-MINES is to use advances in computation to study the
market, its participants and its interaction with the electrical
infrastructure.

The micro level behavior of the market participants coe-
volves with the physical constraints posed by the grid. As an
example, our previous work has shown that binding transmis-
sion constraints can create non-competitive conditions in the
market. The electrical constraints and the network topology
can create isolated geographic markets where generators can
have local monopoly and hence can exert market power. This
work was based on a quantifiable, flow-based definition of
the locational market power which accounts for the electrical
network topology [7], [26]. Issues such as locational market
power cannot be studied in isolation in the market environment
or in the power systems model; an end-to-end modeling
environment such as CI-MINES is needed. In addition it allows
one to study cascading failures in inter-dependent societal
infrastructures and networks [12].

A variety of trading rules, that can accommodate game-
theoretical behavioral strategies for bidding, can be designed
and implemented. The models can be used to validate par-
ticular Smart Grid investment strategies, and help corporate
planners understand the sensitivities of the market outcomes to
changes in market structure, bidding strategies, market clearing
algorithms, and regulatory policies [7]. Grid reliability can be
studied by load flow analysis as both one way and two-way
flows will be supported on the grid.

IV. SUMMARY AND CONCLUSIONS

The study of next generation integrated energy systems
requires detailed representation and analysis of the power grid
and power flow, as well as the social, economic, sensing and
control contexts in which they operate. These different aspects
are typically studied in isolation, and are computationally
extremely challenging; further, models and data are not well
understood or easily available. We propose CI-MINES as the
first integrated framework for studying and supporting policy
and decision making in integrated energy systems.
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